Linear Hinge Loss and Average Margin

نویسندگان

  • Claudio Gentile
  • Manfred K. Warmuth
چکیده

We describe a unifying method for proving relative loss bounds for online linear threshold classification algorithms, such as the Perceptron and the Winnow algorithms. For classification problems the discrete loss is used, i.e., the total number of prediction mistakes. We introduce a continuous loss function, called the “linear hinge loss”, that can be employed to derive the updates of the algorithms. We first prove bounds w.r.t. the linear hinge loss and then convert them to the discrete loss. We introduce a notion of “average margin” of a set of examples . We show how relative loss bounds based on the linear hinge loss can be converted to relative loss bounds i.t.o. the discrete loss using the average margin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Complexity of Linear Large Margin Classification With Ramp Loss

Minimizing the binary classification error with a linear model leads to an NP-hard problem. In practice, surrogate loss functions are used, in particular loss functions leading to large margin classification such as the hinge loss and the ramp loss. The intuitive large margin concept is theoretically supported by generalization bounds linking the expected classification error to the empirical m...

متن کامل

On the consistency of Multithreshold Entropy Linear Classifier

Multithreshold Entropy Linear Classifier (MELC) is a recent classifier idea which employs information theoretic concept in order to create a multithreshold maximum margin model. In this paper we analyze its consistency over multithreshold linear models and show that its objective function upper bounds the amount of misclassified points in a similar manner like hinge loss does in support vector ...

متن کامل

Max-Margin Stacking and Sparse Regularization for Linear Classifier Combination and Selection

The main principle of stacked generalization (or Stacking) is using a second-level generalizer to combine the outputs of base classifiers in an ensemble. In this paper, we investigate different combination types under the stacking framework; namely weighted sum (WS), class-dependent weighted sum (CWS) and linear stacked generalization (LSG). For learning the weights, we propose using regularize...

متن کامل

Computational Learning Theory Lecture 7: Convex Optimisation and Maximising the Margin

This lecture begins our exposition of the Support Vector Machines (SVM) algorithm. This is a procedure for finding linear classifiers that has both solid mathematical foundations and numerous practical applications, including bioinformatics, finance, text mining, face recognition, and image processing. Initially we consider the case in which the input data admits a consisent linear classifer an...

متن کامل

Margin-space integration of MPE loss via differencing of MMI functionals for generalized error-weighted discriminative training

Using the central observation that margin-based weighted classification error (modeled using Minimum Phone Error (MPE)) corresponds to the derivative with respect to the margin term of margin-based hinge loss (modeled using Maximum Mutual Information (MMI)), this article subsumes and extends margin-based MPE and MMI within a broader framework in which the objective function is an integral of MP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998